Decreasing congestion with driverless cars

by Olivia Gonzalez on January 17, 2017

in City Life, Economic Growth, Innovation, New Publications, New Research, Transit and Transportation

Traffic is aggravating. Especially for San Francisco residents. According to Texas A&M Transportation Institute, traffic congestion in the San Francisco-Oakland CA area costs the average auto commuter 78 hours per year in extra travel time, $1,675 for their travel time delays, and an extra 33 gallons of gas compared to free-flow traffic conditions. That means the average commuter spends more than three full days stuck in traffic each year. Unfortunately for these commuters, a potential solution to their problems just left town.

Last month, after California officials told Uber to stop its pilot self-driving car program because it lacked the necessary state permits for autonomous driving, Uber decided to relocate the program from San Francisco to Phoenix, Arizona. In an attempt to alleviate safety concerns, these self-driving cars are not yet driverless, but they do have the potential to reduce the number of cars on the road. Other companies like Google, Tesla, and Ford have expressed plans to develop similar technologies, and some experts predict that completely driverless cars will be on the road by 2021.

Until then, however, cities like San Francisco will continue to suffer from the most severe congestion in the country. Commuters in these cities experience serious delays, higher gasoline usage, and lost time behind the wheel. If you live in any of these areas, you are probably very familiar with the mind-numbing effect of sitting through sluggish traffic.

It shouldn’t be surprising then that these costs could culminate into a larger problem for economic growth. New Mercatus research finds that traffic congestion can significantly harm economic growth and concludes with optimistic predictions for how autonomous vehicle usage could help.

Brookings Senior Fellow Clifford Winston and Yale JD candidate Quentin Karpilow find significant negative effects of traffic congestion on the growth rates of California counties’ gross domestic product (GDP), employment, wages, and commodity freight flows. They find that a 10% reduction in congestion in a California urban area increases both job and GDP growth by roughly 0.25% and wage growth to increase by approximately 0.18%.

This is the first comprehensive model built to understand how traffic harms the economy, and it builds on past research that has found that highway congestion leads to slower job growth. Similarly, congestion in West Coast ports, which occurs while dockworkers and marine terminal employers negotiate contracts, has caused perishable commodities to go bad, resulting in a 0.2 percentage point reduction in GDP during the first quarter of 2015.

There are two main ways to solve the congestion problem; either by reducing the number of cars on the road or by increasing road capacity. Economists have found that the “build more roads” method in application has actually been quite wasteful and usually only induces additional highway traffic that quickly fills the new road capacity.

A common proposal for the alternative method of reducing the number of cars on the road is to implement congestion pricing, or highway tolls that change based on the number of drivers using the road. Increasing the cost of travel during peak travel times incentivizes drivers to think more strategically about when they plan their trips; usually shifting less essential trips to a different time or by carpooling. Another Mercatus study finds that different forms of congestion pricing have been effective at reducing traffic congestion internationally in London and Stockholm as well as for cities in Southern California.

The main drawback of this proposal, however, is the political difficulty of implementation, especially with interstate highways that involve more than one jurisdiction to approve it. Even though surveys show that drivers generally change their mind towards supporting congestion pricing after they experience the lower congestion that results from tolling, getting them on board in the first place can be difficult.

Those skeptical of congestion pricing, or merely looking for a less challenging policy to implement, should look forward to the new growing technology of driverless cars. The authors of the recent Mercatus study, Winston and Karpilow, find that the adoption of autonomous vehicles could have large macroeconomic stimulative effects.

For California specifically, even if just half of vehicles became driverless, this would create nearly 350,000 additional jobs, increase the state’s GDP by $35 billion, and raise workers’ earnings nearly $15 billion. Extrapolating this to the whole country, this could add at least 3 million jobs, raise the nation’s annual growth rate 1.8 percentage points, and raise annual labor earnings more than $100 billion.

What would this mean for the most congested cities? Using Winston and Karpilow’s estimates, I calculated how reduced congestion from increased autonomous car usage could affect Metropolitan Statistical Areas (MSAs) that include New York City, Los Angeles, Boston, San Francisco, and the DC area. The first chart shows the number of jobs that would have been added in 2011 if 50% of motor vehicles had been driverless. The second chart shows how this would affect real GDP per capita, revealing that the San Francisco MSA would have the most to gain, but with the others following close behind.

jobsadd_autonomousvehicles realgdp_autonomousvehicles

As with any new technology, there is uncertainty with how exactly autonomous cars will be fully developed and integrated into cities. But with pilot programs already being implemented by Uber in Pittsburgh and nuTonomy in Singapore, it is becoming clear that the technology’s efficacy is growing.

With approximately $1,332 GDP per capita and 45,318 potential jobs on the table for the San Francisco Metropolitan Statistical Area, it is a shame that San Francisco just missed a chance to realize some of these gains and to be at the forefront of driving progress in autonomous vehicle implementation.

Previous post:

Next post: